Epidemiology and Genetic Relationship of Toxigenic Fungi in Maize Grains From North Central Nigerian States

Author:

Olugbenga Orole Olukayode1ORCID,Chongs Mantu Eno1

Affiliation:

1. Department of Microbiology, Federal University of Lafia, Lafia, Nasarawa State, Nigeria

Abstract

Contamination of maize adversely affects maize quality, yield, and export creating a gap in the attainment of food security, which is a millenium development goal in Nigeria. The study determined fungal abundance, genetic variability, and prevalence of toxigenic fungi in maize grains consumed in North Central, Nigeria. Sixty composite stored maize samples were collected and fungi were isolated and identified after which a multiplex polymerase chain reaction was used to confirm the presence of mycotoxin regulatory genes in suspected toxigenic fungi. The genetic relationship among the toxigenic fungi was determined and the genetic correlation between Aspergillus isolates was established through Restriction fragment length polymorphism (RFLP) analysis. About 389 (64.83%) of the total maize samples collected had fungal species belonging to the genera Aspergillus, Mucor, Penicillium, Fusarium, Trichophyton, and Talaromyces associated with them. Among the regions surveyed, Kogi State exhibited the highest maize contamination rate at 89 samples, accounting for 22.9% of the total samples collected. In Benue and Kogi, the genus Aspergillus exhibited the highest relative abundance, with percentages of 76.6% and 76.3%, respectively. Among its species, Aspergillus flavus and A. niger were the most predominant. Kwara State had the highest fungal diversity with a value of 1.711 ( P < .05). Benue State had 11 isolates (4.6%) with genes encoding for mycotoxin production, the highest recorded. Conversely, Nasarawa and Niger States each had the lowest count, with 4 isolates possessing such genes. Out of the 238 fungi suspected to be mycotoxigenic that were isolated, 39 have genes that encode for mycotoxin synthesis. Low divergence existed between toxigenic fungal species using the alpha diversity index. This study confirmed that the grains were contaminated with closely related fungal strains, and concluded that maize grains consumed in North Central Nigeria showed high association with fungal microbiota, including species capable of contaminating the grains with mycotoxins

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3