The effect of alloying element on the thermophysical properties of carbon fiber-graphite flakes/copper composites

Author:

Chen Youming1,Liu Tongle12,Miao Guodong3,Huang Junchen3,Yang Bing24,Liu Qian12ORCID

Affiliation:

1. College of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, China

2. Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Xiangtan, China

3. Institute of New Materials Technology, University of Science and Technology Beijing, Beijing, China

4. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory National University of Defense Technology, Changsha, China

Abstract

In this study, carbon fiber-graphite flake/copper composites were prepared by powder metallurgy. The impact of the alloying elements Ti and Zr on the composites’ properties was investigated, and the influence of varying Zr contents on the phase structure and thermal conductivity of the composites was also explored. The results indicate that composites containing Zr exhibit better flexural strength and thermal conductivity compared to those containing Ti. When the volume fraction of carbon fiber is 2% and 2 wt% Zr is added to copper matrix, the carbide layer at the composite interface is uniform and has a thickness of 0.36 μm. The thermal conductivity of the composite material is up to 597.5 W/(m∙K). The mechanical properties of the composites are enhanced by the synergistic effect of adding carbon fiber and alloying matrix and the composite shows a remarkable flexural strength of 150.5 MPa, which is 58.3% higher compared to composites without carbon fiber. Furthermore, the strengthening mechanism of carbon fiber on the mechanical properties of the composites was examined. The thermal conductivity of the multiphase composites was effectively predicted using the Acoustic Mismatch Model (AMM) combined with the MF module of Digimat software, and the impact of Ti or Zr elements on the composites’ thermal conductivity was analyzed.

Funder

Hunan Provincial Education Department

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3