Bivariate Fourier-series-based prediction of surface residual stress fields using stresses of partial points

Author:

Wang Fengyun1ORCID,Mao Kuanmin1,Wu Shanguo2,Li Bin3,Xiao Gang1

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

2. Yantai Chengxin Steel Grating Co. Ltd, Yantai, China

3. National NC System Engineering Research Center, Huazhong University of Science and Technology, Wuhan, China

Abstract

Surface residual stresses are critical parameters for evaluating the surface quality and can have an influence on many mechanical properties of solids. These stresses inevitably arise in almost all engineering components during manufacturing. However, most experimental and finite element approaches cannot obtain a complete surface residual stress field in a mechanical part. In this study, we propose a predictive method to determine surface stress fields, depending on residual stresses being self-equilibrating. The effectiveness of the approach is verified using a numerical surface of a beam example with ideal measurements and a casting–milling surface with experimental data. Using the proposed method, surface residual stress fields can be obtained from the stresses of a limited number of points including boundary points to solve the governing equations via a Fourier series bivariate polynomial as an Airy stress function with the Tikhonov regularization method. Our method does not require simulations of the residual stress generation process. This method is suitable for complex engineering parts where the manufacturing process is difficult to recreate in detail. The predicted stress field can be imported into a finite element solver as initial stresses to promote the design, manufacturing, and assessment of mechanical components.

Funder

the High-End CNC Machine Tools and Basic Manufacturing Equipment Technology Major Projects

the National High-Tech Research and Development Programme of China

the Key Projects in the National Science & Technology Pillar Programme

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3