An Initial Residual Stress Inference Method by Incorporating Monitoring Data and Mechanism Model

Author:

Wang Shuguo,Li YingguangORCID,Liu Changqing,Zhao Zhiwei

Abstract

AbstractInitial residual stress is the main reason causing machining deformation of the workpiece, which has been deemed as one of the most important aspects of machining quality issues. The inference of the distribution of initial residual stress inside the blank has significant meaning for machining deformation control. Due to the principle error of existing residual stress detection methods, there are still challenges in practical applications. Aiming at the detection problem of the initial residual stress field, an initial residual stress inference method by incorporating monitoring data and mechanism model is proposed in this paper. Monitoring data during machining process is used to represent the macroscopic characterization of the unbalanced residual stress, and the finite element numerical model is used as the mechanism model so as to solve the problem that the analytic mechanism model is difficult to establish; the policy gradient approach is introduced to solve the gradient descent problem of the combination of learning model and mechanism model. Finally, the initial residual stress field is obtained through iterative calculation based on the fusing method of monitoring data and mechanism model. Verification results show that the proposed inference method of initial residual stress field can accurately and effectively reflect the machining deformation in the actual machining process.

Funder

National Natural Science Foundation of China

China National Funds for Distinguished Young Scientists

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3