Affiliation:
1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
Abstract
Beam theories such as the Timoshenko beam theory are in agreement with the elasticity theory. However, due to the different nonlocal averaging processes, they are expected to yield different results in their nonlocal forms. In the present work, the free vibration behavior of nonlocal nanobeams is studied using the nonlocal integral Timoshenko beam theory (NITBT) and two-dimensional nonlocal integral elasticity theory (2D-NIET) with different kernels and their results are compared. A new kernel, termed the compensated two-phase (CTP) kernel, is introduced, which entirely compensates for the boundary effects and does not suffer from the ill-posedness of previous kernels. Using the finite element method, the free vibration analysis is performed for different boundary conditions based on the first three natural frequencies. For both the NITBT and 2D-NIET with both the two-phase (TP) and CTP kernels, the nonlocal parameter has a softening effect on the natural frequencies for all the boundary conditions, without observing the paradoxical behaviors of the nonlocal differential theory. For both theories, the softening effect of the nonlocal parameter is more pronounced for the TP kernel compared to the CTP kernel. The sensitivity of the 2D-NIET to the nonlocal parameter is found to be higher than that of the NITBT. Also, the softening effects for different vibration modes are compared to each other for both theories and both kernels. The obtained results can be extended for various important beam problems with nonlocal effects and help obtain a better understanding of applicable nonlocal theories.
Funder
Iran National Science Foundation
Isfahan University of Technology
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献