Free vibration analysis of nonlocal nanobeams: a comparison of the one-dimensional nonlocal integral Timoshenko beam theory with the two-dimensional nonlocal integral elasticity theory

Author:

Danesh Hooman1ORCID,Javanbakht Mahdi1ORCID

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Beam theories such as the Timoshenko beam theory are in agreement with the elasticity theory. However, due to the different nonlocal averaging processes, they are expected to yield different results in their nonlocal forms. In the present work, the free vibration behavior of nonlocal nanobeams is studied using the nonlocal integral Timoshenko beam theory (NITBT) and two-dimensional nonlocal integral elasticity theory (2D-NIET) with different kernels and their results are compared. A new kernel, termed the compensated two-phase (CTP) kernel, is introduced, which entirely compensates for the boundary effects and does not suffer from the ill-posedness of previous kernels. Using the finite element method, the free vibration analysis is performed for different boundary conditions based on the first three natural frequencies. For both the NITBT and 2D-NIET with both the two-phase (TP) and CTP kernels, the nonlocal parameter has a softening effect on the natural frequencies for all the boundary conditions, without observing the paradoxical behaviors of the nonlocal differential theory. For both theories, the softening effect of the nonlocal parameter is more pronounced for the TP kernel compared to the CTP kernel. The sensitivity of the 2D-NIET to the nonlocal parameter is found to be higher than that of the NITBT. Also, the softening effects for different vibration modes are compared to each other for both theories and both kernels. The obtained results can be extended for various important beam problems with nonlocal effects and help obtain a better understanding of applicable nonlocal theories.

Funder

Iran National Science Foundation

Isfahan University of Technology

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3