Second-grade elasticity revisited

Author:

Froiio Francesco1ORCID,Zervos Antonis2

Affiliation:

1. Univ Lyon, Ecole Centrale de Lyon, LTDS, F-69134 ECULLY Cedex, France

2. Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Abstract

We present a compact, linearized theory for the quasi-static deformation of elastic materials whose stored energy depends on the first two gradients of the displacement (second-grade elastic materials). The theory targets two main issues: (1) the mechanical interpretation of the boundary conditions and (2) the analytical form and physical interpretation of the relevant stress fields in the sense of Cauchy. Since the pioneering works of Toupin and Mindlin et al. in the 1960’s, a major difficulty has been the lack of a convincing mechanical interpretation of the boundary conditions, causing second-grade theories to be viewed as ‘perturbations’ of constitutive laws for simple (first-grade) materials. The first main contribution of this work is the provision of such an interpretation based on the concept of ortho-fiber. This approach enables us to circumvent some difficulties of a well-known ‘reduction’ of second-grade materials to continua with microstructure (in the sense of Mindlin) with internal constraints. A second main contribution is the deduction of the form of the linear and angular-momentum balance laws, and related stress fields in the sense of Cauchy, as they should appear in a consistent Newtonian formulation. The viewpoint expressed in this work is substantially different from the one in a well known and influential paper by Mindlin and Eshel in 1968, while affinities can be found with recent studies by dell’Isola et al. The merits of the new formulation and the associated numerical approach are demonstrated by stating and solving three example boundary value problems in isotropic elasticity. A general finite element discretization of the governing equations is presented, using C1-continuous interpolation, while the numerical results show excellent convergence even for relatively coarse meshes.

Funder

FP7 Ideas: European Research Council

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3