On Aspects of Continuous Approximation of Diatomic Lattice

Author:

Andrianov Igor V.1ORCID,Khajiyeva Lelya A.2,Kudaibergenov Askar K.2ORCID,Starushenko Galina A.3

Affiliation:

1. Chair and Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstrasse 18, D-52062 Aachen, Germany

2. Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan

3. Department of Information Technology and Information Systems, Dnipro University of Technology, 19 Dmytra Yavornytskoho Ave., 49005 Dnipro, Ukraine

Abstract

This paper is devoted to the continualization of a diatomic lattice, taking into account natural intervals of wavenumber changes. Continualization refers to the replacement of the original pseudo-differential equations by a system of PDEs that provides a good approximation of the dispersion relations. In this regard, the Padé approximants based on the conditions for matching the values of the dispersion relations of the discrete and continuous models at several characteristic points are utilized. As a result, a sixth-order unconditionally stable system with modified inertia is obtained. Appropriate boundary conditions are formulated. The obtained continuous approximation accurately describes the amplitude ratios of neighboring masses. It is also shown that the resulting continuous system provides a good approximation for the natural frequencies.

Funder

I have free of charge publication of the SI editor.

Publisher

MDPI AG

Reference37 articles.

1. Born, M., and Huang, K. (1988). Dynamical Theory of Crystal Lattices, Oxford Press.

2. Über Schwingungen im Raumgittern;Born;Physik. Z,1912

3. Effective parameters and energy of acoustic metamaterials and media;Bobrovnitskii;Acoust. Phys.,2014

4. Impedance theory of wave propagation on infinite periodic structures;Bobrovnitskii;J. Sound Vib.,2022

5. Effective mass and effective stiffness of finite and infinite metamaterial lattices;Li;Arch. Appl. Mech.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3