Effects of Schottky junction on surface waves in a piezoelectric semiconducting film over a metal substrate

Author:

Xu Chunyu1,Wei Peijun1ORCID,Wei Zibo1,Guo Xiao2ORCID

Affiliation:

1. Department of Applied Mechanics, University of Science and Technology Beijing, Beijing, China

2. Department of Applied Mathematics, University of Science and Technology Beijing, Beijing, China

Abstract

Shear horizontal (SH) waves propagating in a metal substrate covered with a transversely isotropic piezoelectric semiconductor thin film is analyzed in the present paper. The Schottky junction, which is created by the metal and the n-type piezoelectric semiconductor with a higher Fermi level, can be seen as an electrically gradient layer between the substrate and the thin film. The transfer matrix of the Schottky junction is derived by using Magnus series expansion and approximate laminated medium methods, respectively. The influences of the Schottky junction, semiconductor coupling, doping density, and electric boundary conditions on the dispersion and attenuation and the first three wave modes are discussed via numerical example. It reveals that numerical results obtained by these two methods are well matched and the existence of Schottky junction has less influence on the dispersion of SH surface wave although, but evidently influences on the attenuation. In particular, the mode shapes of electric potential, electric displacement, carrier perturbation density, and the electric current density are affected evidently by the existence of Schottky junction.

Funder

Central University Basic Research Fund of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3