Nonlinear Viscoelastic Solids—A Review

Author:

Wineman A.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

Elastomers and soft biological tissues can undergo large deformations and exhibit time dependent behavior that is characteristic of nonlinear viscoelastic solids. This article is intended to provide an overview of the subject of nonlinear viscoelastic solids for researchers who are interested in studying the mechanics of these materials. The article begins with a review of topics from linear viscoelasticity that are pertinent to the understanding of nonlinear viscoelastic behavior. It then discusses the topics that enter into the formulation of constitutive equations for isotropic, transversely isotropic and orthotropic nonlinear viscoelastic solids. A number of specific forms of constitutive equations have been proposed in the literature and these are discussed. Attention is restricted to constitutive equations that are phenomenological rather than molecular in origin. The emphasis is then on nonlinear single integral finite linear viscoelastic and Pipkin—Rogers constitutive equations, the latter containing the quasi-linear viscoelastic model used in biomechanics of soft tissue. Expressions for the Pipkin—Rogers model are provided for isotropy, transverse isotropy and orthotropy. The constitutive equations are then applied to the description of homogeneous triaxial stretch and simple shear histories. The special case of uniaxial stretch histories is analyzed in detail. There is a discussion of the deviation from linear behavior as nonlinear effects become important. Non-homogeneous deformations are considered next. The combined tension and torsion of a solid cylinder on an incompressible, isotropic nonlinear viscoelastic solid is discussed in detail because of its importance in experiments involving viscoelastic materials. A large number of solutions to boundary value problems have appeared in the literature and many of these are summarized. The article concludes with comments about interesting topics for further research.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3