Forward and inverse problems for creep models in viscoelasticity

Author:

Itou H.1ORCID,Kovtunenko V. A.23ORCID,Nakamura G.45

Affiliation:

1. Department of Mathematics, Tokyo University of Science , Tokyo 162-8601, Japan

2. Department of Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstraße 36 , Graz 8010, Austria

3. Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences , Novosibirsk 630090, Russia

4. Department of Mathematics, Graduate School of Science, Hokkaido University , Sapporo 060-0810, Japan

5. Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University , Sapporo 060-0812, Japan

Abstract

This study examines a class of time-dependent constitutive equations used to describe viscoelastic materials under creep in solid mechanics. In nonlinear elasticity, the strain response to the applied stress is expressed via an implicit graph allowing multi-valued functions. For coercive and maximal monotone graphs, the existence of a solution to the quasi-static viscoelastic problem is proven by applying the Browder–Minty fixed point theorem. Moreover, for quasi-linear viscoelastic problems, the solution is constructed as a semi-analytic formula. The inverse viscoelastic problem is represented by identification of a design variable from non-smooth measurements. A non-empty set of optimal variables is obtained based on the compactness argument by applying Tikhonov regularization in the space of bounded measures and deformations. Furthermore, an illustrative example is given for the inverse problem of isotropic kernel identification. This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.

Funder

Japan Society for the Promotion of Science

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-smooth variational problems and applications in mechanics;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3