The pull-in instability and eigenfrequency variations of a graphene resonator under electrostatic loading

Author:

Zhang Yin1,Zhao Ya-pu1ORCID

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China

Abstract

A continuum membrane model is presented to describe the pull-in instability and eigenfrequency variations of a graphene resonator under an electrostatic loading. The pull-in instability leads to the device failure and the eigenfrequency variation determines its frequency tuning range, which are among the most important aspects in a micro/nanomechanical resonator design. The von Kármán kinematic assumptions are used for the membrane large deflection. The geometric nonlinearity resulting from a large deflection and the physical nonlinearity resulting from an electrostatic loading are the two competing mechanisms: the geometric nonlinearity stiffens the membrane structure and the physical nonlinearity softens it. The effects of these two competing mechanisms together with the initial tensile strain on the pull-in instability and eigenfrequency variations are vividly demonstrated. With the aim of achieving a higher accuracy, a multimodal computation method together with its convergence study and error analysis is also presented.

Funder

National Natural Science Foundation of China

the Strategic Program Research Program (B) of the Chinese Academy of Sciences

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3