Affiliation:
1. AGH University of Science and Technology, Faculty of Applied Mathematics, Cracow, Poland
2. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Cracow, Poland
Abstract
Over the last two decades, there have been tremendous advances in the computation of diffusion and today many key properties of materials can be accurately predicted by modelling and simulations. In this paper, we present, for the first time, comprehensive studies of interdiffusion in three dimensions, a model, simulations and experiment. The model follows from the local mass conservation with Vegard’s rule and is combined with Darken’s bi-velocity method. The approach is expressed using the nonlinear parabolic–elliptic system of strongly coupled differential equations with initial and nonlinear coupled boundary conditions. Implicit finite difference methods, preserving Vegard’s rule, are generated by some linearization and splitting ideas, in one- and two-dimensional cases. The theorems on the existence and uniqueness of solutions of the implicit difference schemes and the consistency of the difference methods are studied. The numerical results are compared with experimental data for a ternary Fe-Co-Ni system. A good agreement of both sets is revealed, which confirms the strength of the method.
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献