Remarks on Parabolicity in a One-Dimensional Interdiffusion Model with the Vegard Rule

Author:

Sapa LucjanORCID,Bożek Bogusław,Danielewski Marek

Abstract

AbstractUntil 1948 the interdiffusion theory was based on the Onsager phenomenology, namely thermodynamics of irreversible processes, and a drift was not included. Its main limitation is practical impossibility of the experimental as well as theoretical determination of mobilities (diffusivities) in multicomponent systems ($$r > 2$$ r > 2 ). After experimental discovery of the drift by Smigelskas and Kirkendall (Trans AIME 171:130–142, 1947), Darken (Trans AIME 175:184–201, 1948) formulated his famous model for the binary system. Consequently, the bi-velocity approach dominates interdiffusion studies (e.g. in more than 500 papers in 2020). In this paper, we consider the diffusional transport in a one-dimensional r-component solid solution. The model is expressed by the nonlinear system of strongly coupled evolution differential equations with initial and nonlinear coupled boundary conditions. We present a non-trivial proof of a theorem called the criterion of parabolicity, which implies the generalized parabolicity condition formulated without a proof in our previous works. This condition is a key in the proofs of our previous theorems on existence, uniqueness and properties of global weak solutions of the differential problem studied. The criterion of parabolicity works if diffusion coefficients are not too dispersed, and it is true in many physical systems. The numerical simulations consistent with real experiments for which our criterion works are given.

Funder

Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Polish Ministry of Science and Higher Education

Polish National Science Centre for OPUS 13

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Mathematics,General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3