Therapeutic Potential of Selected Varieties of Phoenix Dactylifera L. Against Microbial Biofilm and Free Radical Damage to DNA

Author:

Qasim Nimra1,Shahid Muhammad1,Yousaf Fatima1,Riaz Muhammad2ORCID,Anjum Fozia3,Faryad Muhammad Adeel1,Shabbir Remsha1

Affiliation:

1. Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan

2. Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Pakistan

3. Department of Chemistry, Government College University Faisalabad, Pakistan

Abstract

Phoenix dactylifera L. (Date palm) is the most widely consumed fruit around the world and is rich source of nutrients containing dietary fibers, minerals, vitamins, sugar, protein and antioxidants with potent bioactivities against various microbial pathogens. This study evaluated the therapeutic potential of 2 varieties of ethanolic extracts of Phoenix dactylifera i-e Ajwa and Khalas against bacterial biofilms. This study also investigated the protective effect of Ajwa and Khalas against hydroxyl radical damage to calf thymus DNA. Antioxidant potential through different antioxidant assays showed that Ajwa has higher antioxidant potential than Khalas. Both Ajwa and Khalas presented good antimicrobial activities against Bacillus subtilis and Pasteurella multocida. Biofilm inhibition assay showed that increasing concentration of Ajwa and Khalas exhibited higher percentage of bacterial biofilm inhibition. Microscopic examination revealed significant inhibition of microbial biofilm. Ajwa and Khalas protected the calf thymus DNA against damage caused by hydroxyl radicals produced by fenton reagent. Fourier Transform Infrared (FTIR) spectra confirmed the presence of O–H, C=C and C–O functional groups in tested extracts. The study concluded that tested varieties of Date palm have the potential to inhibit bacterial biofilms and can be used for therapeutic purposes against biofilm producing pathogens.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3