Until There Is a Resolution of the Pro-LNT/Anti-LNT Debate, We Should Head Toward a More Sensible Graded Approach for Protection From Low-Dose Ionizing Radiation

Author:

Sykes Pamela J.1ORCID

Affiliation:

1. Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University. Adelaide, South Australia, Australia

Abstract

Current regulation of ionizing radiation is based on the linear no-threshold (LNT) model where any radiation dose increases cancer risk and is independent of dose rate, resulting in large amounts of time and money being spent protecting from extremely small radiation exposures and hence extremely small risk. There are animal studies which demonstrate that LNT is incorrect at low doses, supporting a threshold or hormesis model and thus indicating that there is no need to protect from very low doses. This has led to a sometimes bitter debate between pro-LNT and anti-LNT camps, and the debate has been at a stalemate for some time. This commentary is not aimed at taking either side of the debate. It is likely that the public, workers, and the environment are adequately protected under current regulation, which is the most important outcome. Until those on one side of the debate can convince the other, it would be sensible to move forward toward a graded (risk-based) approach to regulation, where the stringency of control is commensurate with the risk, resulting hopefully in more sensible practical thresholds. This approach is gradually being put forward by international radiation protection advisory bodies.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3