Applications of a patient-specific whole-body CT-mesh hybrid computational phantom in second cancer risk prediction

Author:

Kollitz ErikaORCID,Roew Moritz,Han HaeginORCID,Pinto MarcoORCID,Kamp Florian,Kim Chan Hyeong,Schwarz MarcoORCID,Belka Claus,Newhauser Wayne,Parodi KatiaORCID,Dedes George

Abstract

Abstract Objective. CT-mesh hybrid phantoms (or ‘hybrid(s)’) made from integrated patient CT data and mesh-type reference computational phantoms (MRCPs) can be beneficial for patient-specific whole-body dose evaluation, but this benefit has yet to be evaluated for second cancer risk prediction. The purpose of this study is to compare the hybrid’s ability to predict risk throughout the body with a patient-scaled MRCP against ground truth whole-body CTs (WBCTs). Approach. Head and neck active scanning proton treatment plans were created for and simulated on seven hybrids and the corresponding scaled MRCPs and WBCTs. Equivalent dose throughout the body was calculated and input into five second cancer risk models for both excess absolute and excess relative risk (EAR and ERR). The hybrid phantom was evaluated by comparing equivalent dose and risk predictions against the WBCT. Main results. The hybrid most frequently provides whole-body second cancer risk predictions which are closer to the ground truth when compared to a scaled MRCP alone. The performance of the hybrid relative to the scaled MRCP was consistent across ERR, EAR, and all risk models. For all in-field organs, where the hybrid shares the WBCT anatomy, the hybrid was better than or equal to the scaled MRCP for both equivalent dose and risk prediction. For out-of-field organs across all patients, the hybrid’s equivalent dose prediction was superior than the scaled MRCP in 48% of all comparisons, equivalent for 34%, and inferior for 18%. For risk assessment in the same organs, the hybrid’s prediction was superior than the scaled MRCP in 51.8% of all comparisons, equivalent in 28.6%, and inferior in 19.6%. Significance. Whole-body risk predictions from the CT-mesh hybrid have shown to be more accurate than those from a reference phantom alone. These hybrids could aid in risk-optimized treatment planning and individual risk assessment to minimize second cancer incidence.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3