The Lowest Radiation Dose Having Molecular Changes in the Living Body

Author:

Shimura Noriko1,Kojima Shuji2

Affiliation:

1. Faculty of Pharmaceutical Sciences, Ohu University, Tomita-machi, Koriyama, Fukushima, Japan

2. Faculty of Pharmaceutical Sciences, Department of Radiation Biosciences, Tokyo University of Science (TUS), Chiba, Japan

Abstract

We herein attempted to identify the lowest radiation dose causing molecular changes in the living body. We investigated the effects of radiation in human cells, animals, and humans. DNA double-strand breaks (DSBs) formed in cells at γ- or X-ray irradiation doses between 1 mGy and 0.5 Gy; however, the extent of DSB formation differed depending on the cell species. The formation of micronuclei (MNs) and nucleoplasmic bridges (NPBs) was noted at radiation doses between 0.1 and 0.2 Gy. Stress-responsive genes were upregulated by lower radiation doses than those that induced DNA DSBs or MN and NPBs. These γ- or X-ray radiation doses ranged between approximately 10 and 50 mGy. In animals, chromosomal aberrations were detected between 50 mGy and 0.1 Gy of low linear energy transfer radiation, 0.1 Gy of metal ion beams, and 9 mGy of fast neutrons. In humans, DNA damage has been observed in children who underwent computed tomography scans with an estimated blood radiation dose as low as 0.15 mGy shortly after examination. The frequencies of chromosomal translocations were lower in residents of high background areas than in those of control areas. In humans, systemic adaptive responses may have been prominently expressed at these radiation doses.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3