Teaming with Your Car: Redefining the Driver–Automation Relationship in Highly Automated Vehicles

Author:

Lee Joonbum1ORCID,Rheem Hansol1ORCID,Lee John D.1ORCID,Szczerba Joseph F.2,Tsimhoni Omer2

Affiliation:

1. Department of Industrial and Systems Engineering, University of Wisconsin–Madison, Madison, WI, USA

2. Vehicle Systems Research Laboratory, General Motors Global Research & Development Center, Warren, MI, USA

Abstract

Advances in automated driving systems (ADSs) have shifted the primary responsibility of controlling a vehicle from human drivers to automation. Framing driving a highly automated vehicle as teamwork can reveal practical requirements and design considerations to support the dynamic driver–ADS relationship. However, human–automation teaming is a relatively new concept in ADS research and requires further exploration. We conducted two literature reviews to identify concepts related to teaming and to define the driver–ADS relationship, requirements, and design considerations. The first literature review identified coordination, cooperation, and collaboration (3Cs) as core concepts to define driver–ADS teaming. Based on these findings, we propose the panarchy framework of 3Cs to understand drivers’ roles and relationships with automation in driver–ADS teaming. The second literature review identified main challenges for designing driver–ADS teams. The challenges include supporting mutual communication, enhancing observability and directability, developing a responsive ADS, and identifying and supporting the interdependent relationship between the driver and ADS. This study suggests that the teaming concept can promote a better understanding of the driver–ADS team where the driver and automation require interplay. Eventually, the driver–ADS teaming frame will lead to adequate expectations and mental models of partially automated vehicles.

Funder

General Motors Corporation

Publisher

SAGE Publications

Subject

Applied Psychology,Engineering (miscellaneous),Computer Science Applications,Human Factors and Ergonomics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3