Affiliation:
1. Department of Biology, Science College, King Khalid University, Abha, Saudi Arabia
2. Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
Abstract
Because cadmium (Cd) is not naturally degradable by ecosystems, it interferes with many types of food chains. Cd accumulates in the kidney, liver and in the nervous tissues, especially the brain. The neurotoxicity of Cd is very high, as it alters the integrity, and increases the permeability, of the blood–brain barrier. Cd penetrates and accumulates in neurons in the brains of rats. This study reveals that Cd decreases antioxidant enzymes and increases oxidative stress in the brain. In addition, Cd increases lipid peroxidation of brain tissues. Cd increases the expression of the Cu/Zn superoxide dismutase gene. It also affects cholinergic, glutamatergic, gamma-Aminobutyric acid (GABAergic), dopamine, serotonin and acetylcholine neurotransmitters in brain tissue. Consequently, Cd increases the formation of amyloid β, a neurotoxic index, and induces apoptosis by changing the quality and the quantity of Bcl-2, Bax and p53 proteins. In conclusion, both selenium and nanoselenium show potential antioxidant activity and promote recovery from the neurotoxic action of Cd.
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献