Neuroprotective Role of Selenium Nanoparticles Against Behavioral, Neurobiochemical and Histological Alterations in Rats Subjected to Chronic Restraint Stress

Author:

Elfakharany Sarah A.ORCID,Eskaros Samir S.,Azhary Nesrine M. ElORCID,Abdelmonsif Doaa A.ORCID,Zeitoun Teshreen M.ORCID,Ammar Gamal A. G.ORCID,Hatem Youssef A.ORCID

Abstract

AbstractChronic stress induces changes in the prefrontal cortex and hippocampus. Selenium nanoparticles (SeNPs) showed promising results in several neurological animal models. The implementation of SeNPs in chronic restraint stress (CRS) remains to be elucidated. This study was done to determine the possible protective effects of selenium nanoparticles on behavioral changes and brain oxidative stress markers in a rat model of CRS. 50 rats were divided into three groups; control group (n = 10), untreated CRS group (n = 10) and CRS-SeNPs treated group (n = 30). Restraint stress was performed 6 h./day for 21 days. Rats of CRS-SeNPs treated group received 1, 2.5 or 5 mg/kg SeNPs (10 rats each) by oral gavage for 21 days. Rats were subjected to behavioral assessments and then sacrificed for biochemical and histological analysis of the prefrontal cortex and hippocampus. Prefrontal cortical and hippocampal serotonin levels, oxidative stress markers including malondialdehyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx), tumor necrosis factor alpha (TNF-α) and caspase-3 were assessed. Accordingly, different doses of SeNPs showed variable effectiveness in ameliorating disease parameters, with 2.5 mg/kg dose of SeNPs showing the best improving results in all studied parameters. The present study exhibited the neuroprotective role of SeNPs in rats subjected to CRS and proposed their antioxidant, anti-inflammatory and anti-apoptotic effects as the possible mechanism for increased prefrontal cortical and hippocampal serotonin level, ameliorated anxiety-like and depressive-like behaviors and improved prefrontal cortical and hippocampal histological architecture.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3