Nicotinamide improves NAD+ levels to protect against acetaminophen-induced acute liver injury in mice

Author:

Xu J12,Zhang L12,Jiang R2,Hu K2,Hu D12,Liao C12,Jiang S12,Yang Y12,Huang J12,Tang L12,Li L12ORCID

Affiliation:

1. Department of Pathophysiology, Chongqing Medical University, Chongqing, China

2. Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China

Abstract

Acetaminophen (APAP) overdose causes acute liver injury (ALI). Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme, and NAD+ is oxidized type which synthesized from nicotinamide (NAM). The present study aimed to investigate the role of NAD+ in ALI and protective property of NAM. The mice were subjected to different doses APAP. After 8 hours, the serum activities of alaninetransaminase (ALT) and aspartate aminotransferase (AST), the hepatic NAD+ level and nicotinamide phosphoribosyltransferase (NAMPT) expression were determined. Then, the mice were pretreated with NAM (800 mg/kg), the hepatoprotective effects and the key antioxidative molecules were evaluated. Our findings indicated that APAP resulted in remarkable NAD+ depletion in a dose-dependent manner accompanied by NAMPT downregulation, and NAM pretreatment significantly elevated the NAD+ decline due to upregulation of NAMPT. Moreover, the downregulated Kelch-like ECH-associated protein-1 (Keap1), upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation activation after NAM administration were confirmed, which were in accordance with improved superoxide dismutase (SOD) and glutathione (GSH) levels. Finally, NAM dramatically exhibited hepatoprotective effects by reducing the liver index and necrotic area. This study has suggested that APAP impairs liver NAD+ level and NAM is able to improve hepatic NAD+ to activate antioxidant pathway against APAP-induced ALI.

Funder

Science and Technology Bureau of Yuzhong District

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3