Affiliation:
1. Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
2. Department of Endocrinology and Metabolism, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, China
Abstract
High glucose (HG) induces vascular injury in diabetes. Hydroxysafflor yellow A (HSYA) has been used to ameliorate ischemic cardiovascular diseases in China for many years. In the present study, we assessed whether HSYA has a potential protective role in HG-induced human umbilical vein endothelial cell (HUVEC) injury. Cell viability was determined with an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell apoptosis was detected by fluorescein isothiocyanate/propidium iodide staining assay. The endothelial cell permeability was measured with a permeability assay. Cell adhesion molecule (CAM) expression, vascular endothelial growth factor, and basic fibroblast growth factor levels were detected with an enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) formation was measured with a DCF-DA assay. Protein expression of NADPH oxidase 4 (NOX4) was measured by Western blotting. Our data indicated that HG increases HUVEC apoptosis, vascular permeability, monocyte adhesion, the level of CAMs, the formation of ROS, and NOX4 expression. Our data revealed that HG increases vascular injury, which is attenuated by HSYA. Because vascular inflammation has a key role in the development of diabetes mellitus, our results implied that HSYA is considered as a potential agent for diabetic vascular injury treatment.
Funder
Discipline Construction Project of Health and Family Planning Commission of Pudong New Area
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献