Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats

Author:

Abd-Ellah MF1,Aly HAA12,Mokhlis HAM1,Abdel-Aziz AH1

Affiliation:

1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt

2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

The aim of the present study was to investigate the potential oxidative damage of di-(2-ethylhexyl) phthalate (DEHP) in the rat testis and to further elucidate the potential modulatory effect of quercetin. DEHP was diluted in corn oil and given to rats by oral gavage at doses 0, 300, 600, and 900 mg/kg/day (groups I, III, IV, or V, respectively) for 15 consecutive days. Group VI was pretreated with quercetin (90 mg/kg), 24 h before starting the experiment and then treated with DEHP (900 mg/kg/day) for 15 consecutive days. Group II was treated with quercetin (90 mg/kg/day). The relative testes weight and sperm motility were significantly decreased by treatment with 900 mg/kg of DEHP. Both sperm count and daily sperm production were significantly decreased by DEHP treatment at doses of 600 and 900 mg/kg. Serum testosterone level and prostatic acid phosphatase (ACP) activity and testicular lactate dehydrogenase-X (LDH-X) activity were significantly decreased in animals treated with 900 mg/kg. Serum total ACP activity was significantly increased in animals treated with 600 and 900 mg/kg of DEHP. DEHP treatment induced oxidative stress and histopathological abnormality. These abnormalities were effectively normalized by pretreatment with quercetin except for LDH-X near normalcy. In conclusion, the findings of this study demonstrate that DEHP impairs testicular function at least, in part, by inducing oxidative stress and quercetin has a potent protective effect against DEHP-induced testicular toxicity in rats.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3