Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression

Author:

Sun Wei1,Li Xiaoliang2,Tang Dongxin1,Wu Yuanhua3,An Lei123ORCID

Affiliation:

1. Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China

2. Department of Neurology, Jinan Hospital, Jinan, China

3. Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China

Abstract

Although melamine exposure induces cognitive deficits and dysfunctional neurotransmission in hippocampal Cornus Ammonis (CA) 1 region of rats, it is unclear whether the neural function, such as neural oscillations between hippocampal CA3–CA1 pathway and postsynaptic receptors involves in these effects. The levels of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit glutamate receptor (GluR) 1 and GluR2/3 in CA1 region of melamine-treated rats, which were intragastric treated with 300 mg/kg/day for 4 weeks, were detected. Following systemic or intra-hippocampal CA1 injection with GluR2/3 agonist, spatial learning of melamine-treated rats was assessed in Morris water maze (MWM) task. Local field potentials were recorded in CA3–CA1 pathway before and during behavioral test. General Partial Directed Coherence approach was applied to determine directionality of neural information flow between CA3 and CA1 regions. Results showed that melamine exposure reduced GluR2/3 but not GluR1 level and systemic or intra-hippocampal CA1 injection with GluR2/3 agonist effectively mitigated the learning deficits. Phase synchronization between CA3 and CA1 regions were significantly diminished in delta, theta and alpha oscillations. Coupling directional index and strength of CA3 driving CA1 were marked reduced as well. Intra-hippocampal CA1 infusion with GluR2/3 agonist significantly enhanced the phase locked value and reversed the melamine-induced reduction in the neural information flow (NIF) from CA3 to CA1 region. These findings support that melamine exposure decrease the expression of GluR2/3 subunit involved in weakening directionality index of NIF, and thereby induced spatial learning deficits.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3