Phillyrin ameliorates diabetic nephropathy through the PI3K/Akt/GSK-3β signalling pathway in streptozotocin-induced diabetic mice

Author:

Wang Tianyang1,Wen Xuejiao1,Zhang Ziwen1,Xie Minjuan1,Zhou Jie1ORCID

Affiliation:

1. School of Medicine, Yichun University, Yichun, P.R. China

Abstract

Diabetic nephropathy is a progressive kidney disease resulting from long-term hyperglycaemia in diabetic patients, and the underlying mechanism is complex and lacks effective treatments. Various active ingredients in Chinese herbs have been shown to alleviate renal injury and improve DN in recent years. Phillyrin, a natural medicinal active compound extracted from the Oleaceae family, has various pharmacological effects, including antioxidative, antiapoptotic and antiobesity effects. However, the role of phillyrin and its underlying mechanism in DN have not yet been explored. To investigate the effects of phillyrin on DN and its potential mechanisms of action, we performed experiments using streptozotocin (STZ)-induced DN mice as models. Phillyrin significantly reduced the levels of fasting blood glucose (FBG) and glycosylated haemoglobin A1c (HbA1c), downregulated the levels of serum blood urea nitrogen (BUN), serum creatinine (Scr), serum and urine β2-microglobulins (β2-MG) and improved the pathological changes of the kidney in a DN mouse model. Phillyrin also increased the level of antioxidants and attenuated oxidative damage in DN model mice. In addition, phillyrin inhibited Glycogen synthase kinase-3β (GSK-3β) activity by activating the PI3K/Akt signalling pathway, increased the Bcl-2/Bax ratio, reduced the release of cytochrome c from the mitochondria to the cytoplasm, subsequently inhibited the activation of caspase-3 and ultimately suppressed renal cell apoptosis. These findings suggested that phillyrin could be a new promising therapeutic strategy for DN, and this protective effect might be related to suppressing oxidative stress and apoptosis via the PI3K/Akt/GSK-3β pathway.

Funder

National Natural Science Foundation of China

Education Department of Jiangxi Province

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3