Inorganic mercury exposure in prairie voles (Microtus ochrogaster) alters the expression of toll-like receptor 4 and activates inflammatory pathways in the liver in a sex-specific manner

Author:

Assefa S1,Curtis JT2,Sethi S3,Davis RL2,Chen Y2,Kaul R1

Affiliation:

1. Department of Biochemistry and Microbiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK, USA

2. Department of Pharmacology and Physiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK, USA

3. Department of Pathology, Wayne State University School of Medicine, Karamos Cancer Center, Detroit, MI, USA

Abstract

Environmental exposure to mercury can cause a number of adverse effects in humans including the disruption of endocrine function that may result in sex-specific effects. The present study was designed to characterize sex-specific effects of chronic inorganic mercury exposure on toll-like receptor (TLR) 2 and TLR4 and inflammatory signaling in the liver of prairie voles ( Microtus ochrogaster). Following 10 weeks of exposure to mercury via drinking water, effects on protein expression levels of TLR2 and TLR4 and the downstream p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa (NF-κB) signaling pathways were assessed. Using immunoblot analysis, we found that mercury exposure significantly enhanced the expression of TLR4 and activated p38 MAPK and NF-κB pathways in vole livers. This is the first report indicating that TLR4 may serve as a sensor for chronic mercury exposure in the liver. Further, compared to females, mercury-treated male voles exhibited significant increases in activated p38 MAPK and a greater extent of liver damage. Together, these findings establish sex-specific liver immunomodulation and cellular signaling following chronic inorganic mercury exposure. Furthermore, this study also supports the use of voles as biomarkers of environmental mercury contamination and offers a promising in vivo tool to test various therapeutic strategies for mercury detoxification.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3