T-2 toxin induces articular cartilage damage by increasing the expression of MMP-13 via the TGF-β receptor pathway

Author:

Zhang Ying12ORCID,Li Zhengzheng13ORCID,He Ying1ORCID,Liu Yinan1,Mi Ge1ORCID,Chen Jinghong1ORCID

Affiliation:

1. School of Public Health, Health Science Center of Xi’an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People’s Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an, Shaanxi, P.R China.

2. School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, PR China

3. Affiliated Hospital of Yan’an University, Yan ‘an, Shaanxi, PR China

Abstract

T-2 toxin pre-disposes individuals to osteoarthritis, Kashin–Beck disease (KBD). The major pathological change associated with KBD is the degradation of the articular cartilage matrix. Herein, we investigated the key molecules that regulate T-2 toxin-mediated cartilage degradation. Potential KBD treatments were also investigated. Sprague Dawley rats were divided into the T-2 toxin group and the control group. The T-2 toxin group received 100 ng/g BW/day, whereas the control group received a similar dose of PBS. The expression of matrix metalloproteinase-13 (MMP-13) and TGF-β receptor I/II (TGF-βRI/II) was analyzed using immunohistochemical staining. C28/I2 chondrocytes were exposed to TGF-βRI/II binding inhibitor (GW788388) for 24 h before incubation in different T-2 toxin concentrations (0, 6, 12, and 24 ng/mL for 72 h). The expression of mRNA for TGF-βRI/II, MMP-13 and proteins for MMP-13, and Smad-2 in chondrocytes were analyzed using RT-PCR and western blot, respectively. Safranin O staining revealed that T-2 toxin treatment modulated the expression of articular cartilage matrix. On the other hand, T-2 toxin treatment sharply increased the expression of MMP-13, TGF-βRI, and TGF-βRII in the rat cartilages. Interestingly, blocking the TGF-βRs-smad 2 signaling pathway using GW788388 abrogated the effect of T-2 toxin on upregulating MMP-13 expression. The expression of MMP-13 in chondrocytes induced with T-2 toxin is regulated via the TGF-βRs signaling pathway. As such, inhibiting the expression of TGF-βRs is a potential KBD treatment.

Funder

Shaanxi Science and Technology Department

National Natural Science Foundation of China

China Scholarship Council

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3