Are we ready to replace dimercaprol (BAL) as an arsenic antidote?

Author:

Mückter Harald1,Lieb Bernhard1,Reich Franz-Xaver1,Hunder Göran1,Walther Udo1,Fichtl Burckhard1

Affiliation:

1. Walther-Straub-Institut für Pharmakologie und Toxikologie, Nuβbaumstrasse 26, D-80336 München, Germany

Abstract

1 Dimercaprol (BAL), 2,3-dimercaptopropanesulpho nate sodium (DMPS) and meso-2,3-dimercaptosucci nic acid (DMSA) are effective arsenic antidotes, but the question which one is preferable for optimal therapy of arsenic poisoning is still open to discussion. Major drawbacks of BAL include (a) its low therapeutic index, (b) its tendency to redistribute arsenic to brain and testes, for example, (c) the need for (painful) intramuscular injection and (d) its unpleasant odour. 2 The newer antidotes DMPS and DMSA feature low toxicity and high therapeutic index. They can be given orally or intravenously due to their high water solubility. While these advantages make it likely that DMPS and DMSA will replace BAL for the treatment of chronic arsenic poisoning, acute intoxication - espe cially with lipophilic organoarsenicals - may pose a problem for the hydrophilic antidotes, because their ionic nature can adversely affect intracellular avail ability. 3 This article focuses on aspects dealing with the power of BAL, DMPS, and DMSA to mobilize tissue-bound arsenic in various experimental models, such as monolayers of MDCK (=Madin-Darby canine kidney) cells from dog kidney, isolated perfused liver from guinea-pigs, and perfused jejunal segments from rat small intestine. 4 The results show that hydrophilic DMPS and DMSA may fail to rapidly and completely remove arsenic that has escaped from the extracellular space across tight epithelial barriers. However, owing to their low toxicity, which allows larger doses to be applied, and the potential modification of their pharmacokinetics by means of inert oral anion-exchange resins, DMPS and DMSA may advantageously replace BAL when ever intervention time is not critical. With severe intoxication by organic arsenicals, when the point-of- no-return is a limiting factor, BAL may still have a place as an arsenic antidote.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3