Protective effects of zingerone on high cholesterol diet-induced atherosclerosis through lipid regulatory signaling pathway

Author:

Geng X1,Liu H2,Yuwen Q3,Wang J4,Zhang S5,Zhang X6,Sun J2ORCID

Affiliation:

1. Department of Emergency, Tangshan Gongren Hospital, Tangshan, Hebei, People’s Republic of China

2. Medical Imaging Department, Tangshan Gongren Hospital, Tangshan, Hebei, People’s Republic of China

3. Medical Imaging Department, Yanda Hospital, Langfang, Hebei, People’s Republic of China

4. Department of Stomatology, Tangshan Gongren Hospital, Tangshan, Hebei, People’s Republic of China

5. Department of Emergency, Luanzhou People’s Hospital, Tangshan, Hebei, People’s Republic of China

6. Department of Infectious Diseases, Zunhua People’s Hospital, Tangshan, Hebei, People’s Republic of China

Abstract

Aim: A high cholesterol diet (HCD) is known to cause metabolic dysregulation, oxidative stress, cardiovascular diseases and atherogenesis. Zingerone is a pharmacologically active component of dry ginger. Zingerone has been shown to have a wide range of pharmacological properties, including scavenging free radicals, high antioxidant activity, suppressing lipid peroxidation and anti-inflammatory. This study aimed to investigate the effects of Zingerone on HCD-induced atherosclerosis in rats. Methods: Animals were divided into four categories (n = 6). Group I: normal control, Group II: zingerone control (20 mg/kg b.wt.), group III: HCD-induced atherosclerosis, Group IV: HCD + zingerone, respectively, for 8 weeks. Results: The HCD-fed rats resulted in a significant increase in an atherosclerotic lesion, lipid peroxidation, lipid profile, high-density lipoprotein concentration, cardiac markers, body weight, reduced antioxidant status, and displayed atherosclerosis. These findings were conventional by up-regulated expression of lipid regulatory genes like sterol-regulatory-element-binding protein-c (SREBP-c), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), acetyl-CoA synthetase (ACS), liver X receptor–alpha (LXR-α), and down-regulated expression of acetyl-CoA oxidase (ACO), peroxisome proliferator-activated receptor-alpha (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1) in HCD-fed rats. These significant changes were observed in the zingerone-treated rats for the last 4 weeks. Conclusion: These findings suggest that zingerone reduced atherosclerosis by modulated the atherosclerotic lesion, lipid profile, antioxidant status and lipid regulatory gene expression in HCD-fed rats.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3