Evaluation of 4-methyl-2-[(2-methylbenzyl) amino]-1,3-thiazole-5-carboxylic acid against hyperglycemia, insulin sensitivity, and oxidative stress-induced inflammatory responses and β-cell damage in the pancreas of streptozotocin-induced diabetic rats

Author:

Paudel YN1,Ali MR2,Bawa S1,Shah S1,Adil M1,Siddiqui A1,Basheer AS1,Hassan MQ1,Sharma M1

Affiliation:

1. Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India

Abstract

4-Methyl-2-[(2-methylbenzyl) amino]-1,3-thiazole-5-carboxylic acid (bioactive compound (BAC)), a novel thiazole derivative, is a xanthine oxidase inhibitor and free radical scavenging agent. Effects of BAC on hyperglycemia, insulin sensitivity, oxidative stress, and inflammatory mediators were evaluated in streptozotocin (STZ)-induced neonatal models of non-insulin-dependent diabetes mellitus (NIDDM) rats where NIDDM was induced in neonatal pups with single intraperitoneal injection of STZ (100 mg/kg). The effect of BAC (10 and 20 mg/kg, p.o.) for 3 weeks was evaluated by the determination of blood glucose, oral glucose tolerance test (OGTT), HbA1c level, insulin level, insulin sensitivity, and insulin resistance (IR). Furthermore, inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) and oxidative stress were estimated in serum and pancreatic tissue, respectively. Significant alteration in the level of blood glucose, OGTT, HbA1c, insulin level, insulin sensitivity, in addition variation in the antioxidant status and inflammatory mediators, and alteration in histoarchitecture of pancreatic tissue confirmed the potential of BAC in STZ-induced neonatal models of NIDDM rats. Pretreatment with BAC restored the level of glucose by decreasing the IR and increasing the insulin sensitivity. Furthermore, BAC balanced the antioxidant status and preserved the inflammatory mediators. Histological studies of pancreatic tissues showed normal architecture after BAC administration to diabetic rats. Altogether, our results suggest that BAC successfully reduces the blood glucose level and possesses antioxidant as well as anti-inflammatory activities. This leads to decreased histological damage in diabetic pancreatic tissues, suggesting the possibility of future diabetes treatments.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3