Affiliation:
1. School of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
2. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
Abstract
The existing equipment of civil aircraft cargo fire detection mainly uses photoelectric smoke detectors, which has a high false alarm rate. According to Federal Aviation Agency’s (FAA) statistics, the false alarm rate is as high as 99%. 1 In the cargo of civil aircraft, the traditional photoelectric detection technology cannot effectively distinguish interference particles from smoke particles. Since the video smoke detection technology has proven to be reliable in many large scenarios, a deep learning method of image processing for fire detection is proposed. The proposed convolutional neural network is constructed of front end network and back end network cascaded with the capsule network and the circularity computation for the dynamic infrared fire image texture extraction. In order to accurately identify whether there is a fire in the area and give the kind of burning substances, a series of fuels are selected, such as n-heptane, cyclohexane, and carton for combustion reaction, and infrared camera is used to take infrared images of all fuel combustion. Experimental results show that the proposed method can effectively detect fire at the early stage of fire which is applicable for fire detection in civil aircraft cargoes.
Funder
National Natural Science Foundation of China
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献