Stability analysis of connected vehicles with V2V communication and time delays: CTCR method via Bézout’s resultant

Author:

Akkaya Sirin1ORCID,Akbati Onur2,Ergenc Ali Fuat3ORCID

Affiliation:

1. Graduate School of Science Engineering and Technology, Istanbul Technical University, Turkey

2. Department of Control and Automation Engineering, Yildiz Technical University, Turkey

3. Department of Control and Automation Engineering, Istanbul Technical University, Turkey

Abstract

This paper is focused on the distributed control of connected vehicles via vehicle-to-vehicle (V2V) communication. A mixed predecessor following topology with a virtual leader under constant time headway policy is analysed in case of communication and input delays. The longitudinal dynamics of each vehicle in the platoon is represented by a third-order linear model. Unavoidable communication and input delays are introduced into the platoon structure which converts the characteristic equation of the system into a transcendental type. The stability regions of the system in delay space are obtained by utilizing the cluster treatment of characteristic root (CTCR) method in the case of single and multiple time delays. A new Bézout resultant matrix-based approach is proposed to determine the kernel and offspring hypersurfaces of the CTCR method. The determination of these kernel and offspring hypersurfaces becomes computational costly as the number of vehicles increases in the platoon due to the increasing degree of characteristic equation. However, the proposed method reduces the dimensions of the coefficient matrix which is created by using the characteristic equation. It is concluded that the proposed method confirms the internal stability of the connected vehicles with both generic information flow topologies and formation between vehicles under single and multiple time delays. Thereafter, a local string stability definition is proposed in terms of spacing errors. Sufficient conditions to obtain string stability under mixed predecessor following topology for the existence and nonexistence of time delay are given. Finally, several simulation studies with different scenarios are conducted to display the effectiveness of the proposed model and method for internal and string stabilities.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3