Stability Analysis of the Vehicular Platoon with Sensing Delay and Communication Delay: CTCR Paradigm via Dixon Resultant

Author:

Zhu Xu1ORCID,Shen Yongming1,Zhang Zehua2,Yan Maode1

Affiliation:

1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

2. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

For the vehicular platoon consisting of connected automotive vehicles, time delays degrade both the internal stability and string stability. In this study, the internal stability and string stability of the vehicular platoon suffering from sensing delay and communication delay are investigated. In the internal stability analysis, the necessary and sufficient internal stability condition is obtained and the exact time delay margins (ETDMs) are derived via the cluster treatment of characteristic root (CTCR) paradigm. A Dixon resultant matrix–based method is proposed to determine the kernel and offspring hypersurfaces of the CTCR paradigm, and then the computational burden of deriving the ETDMs is reduced significantly. In the string stability analysis, we first propose the string stability conditions for the situation no matter how large the frequency of the leader vehicle’s maneuver is. Furthermore, the more practical string stability conditions are studied by considering only the region of low frequency, where most of the energy of the spacing errors exists. Then, a lower bound of the time headway is deduced to enhance road capacity, so the potential of the vehicular platoon is fully motivated. Numerical simulations are provided to illustrate the effectiveness of the theoretical claims.

Funder

National Natural Science Foundation (NNSF) of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3