A Two-Stage Cooperative Adaptive Cruise Control for Connected Automated Vehicles in Multislope Roads considering Communication Delay and Actuator Delay

Author:

Kuang Jianjie1ORCID,Tan Gangfeng12ORCID,Guo Xuexun12ORCID,Pei Xiaofei12ORCID,Peng Dengzhi13ORCID

Affiliation:

1. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

3. Dongfeng Off-road Vehicle Co. Ltd, Shiyan 442013, China

Abstract

Connected and automated vehicle platoons (CAVPs) are considered an effective way to alleviate traffic congestion, reduce the incidence of traffic accidents, and improve vehicle economy in the intelligent transportation system (ITS). Vehicles in the CAVPs can communicate with each other through V2X technology, which could optimize the economy of the platoon. Cooperative adaptive cruise control (CACC) can make effective use of the characteristics of CAVPs and contribute to resource conservation, ecological driving, and traffic system development. In this paper, a two-stage CACC method is proposed for CAVPs to reduce fuel consumption in the multislope road section. In the first stage, the optimal velocity profiles for the leader based on dynamic programming (DP) are planned according to the road information and the fuel consumption model. In the second stage, a vehicle longitudinal third-order differential dynamics model is utilized to build the platoon time-delay system considering communication delay and actuator delay. A feedback controller is developed for each vehicle considering the internal stability and the string stability of the CAVPs. Results show that the proposed method can save 5.33% of fuel consumption compared to the constant speed cooperative adaptive cruise control (CS-CACC) method and has a better tracking performance compared to the model predictive control (MPC) method. The CACC method proposed in this paper can provide a theoretical basis and data support for building an ecological CACC strategy for CAVPs.

Funder

111 Project, China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3