A hybrid approach for measuring the vibrational trend of hydroelectric unit with enhanced multi-scale chaotic series analysis and optimized least squares support vector machine

Author:

Fu Wenlong12ORCID,Wang Kai12,Zhang Chu3,Tan Jiawen12

Affiliation:

1. College of Electrical Engineering & New Energy, China Three Gorges University, PR China

2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, PR China

3. College of Automation, Huaiyin Institute of Technology, PR China

Abstract

Accurate vibrational trend measuring for hydroelectric unit (HEU) is of great significance for safe and economic operation of unit. For this purpose, a novel hybrid approach based on variational mode decomposition (VMD), singular value decomposition (SVD)-based phase space reconstruction (PSR) and least squares support vector machine (LSSVM) improved with adaptive sine cosine algorithm optimization (ASCA) is proposed. Firstly, the raw vibration signal is preprocessed into several components with different scales by VMD, while the residual of VMD is defined as an additional component. Then, SVD with median filtering is utilized to unearth the dominating characteristic ingredients of each component, with which the chaotic series analysis will be effectively implemented. Moreover, the optimal parameters of PSR for each original component are determined by applying grid search on the corresponding dominating component. Later, LSSVM improved by ASCA are established for all the components, whose inputs and outputs are obtained by performing PSR with the optimal parameters. Finally, the measuring results of vibration trend are deduced by accumulating the prediction values of all the components. Furthermore, five related methods are employed to evaluate the effectiveness of the proposed approach. The results illustrate that: (1) the VMD-based models obtained better evaluation indexes compared with the relevant models through significantly weakening the non-stationarity of the original signal; (2) the proposed SVD-based PSR enhanced efficiency of chaotic system restoration, thus to improve the measuring accuracy effectively; (3) the proposed ASCA optimization algorithm could effectively search the parameters of LSSCVM, which contributes to improving model performance.

Funder

Hubei Provincial Major Project for Technical Innovation

national natural science foundation of china

The Open Fund of Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3