A Multistep Prediction Model for the Vibration Trends of Hydroelectric Generator Units Based on Variational Mode Decomposition and Stochastic Configuration Networks

Author:

Yan Shaokai1ORCID,Chen Fei1,Yang Jiandong1,Zhao Zhigao1ORCID

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

Abstract

Accurately predicting the changes in turbine vibration trends is a key part of the operational condition maintenance of hydropower units, which is of great significance for improving both the operational condition and operational efficiency of hydropower plants. In this paper, we propose a multistep prediction model for the vibration trend of a hydropower unit. This model is based on the theoretical principles of signal processing and machine learning, incorporating variational mode decomposition (VMD), stochastic configuration networks (SCNs), and the recursive strategy. Firstly, in view of the severe fluctuations of the vibration signal of the unit, this paper decomposes the unit vibration data into intrinsic mode function (IMF) components of different frequencies by VMD, which effectively alleviates the instability of the vibration trend. Secondly, an SCN model is used to predict different IMF components. Then, the predicted values of all the IMF components are superimposed to form the prediction results. Finally, according to the recursive strategy, a multistep prediction model of the HGU’s vibration trends is constructed by adding new input variables to the prediction results. This model is applied to the prediction of vibration data from different components of a unit, and the experimental results show that the proposed multistep prediction model can accurately predict the vibration trend of the unit. The proposed multistep prediction model of the vibration trends of hydropower units is of great significance in guiding power plants to adjust their control strategies to reach optimal operating efficiency.

Funder

National Natural Science Foundation of China

scientific research foundation of China Postdoctoral Innovation Talents Support Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3