Optimal robust adaptive fuzzy backstepping control of electro-hydraulic servo position system

Author:

Zaare Saeed1ORCID,Soltanpour Mohammad Reza2ORCID

Affiliation:

1. Department of Electrical Engineering, Khatam Al-Anbiya University, Iran

2. Department of Electrical Engineering, Shahid Sattari Aeronautical University of Science and Technology, Iran

Abstract

In this paper, an optimal robust adaptive fuzzy backstepping control is presented to the position control of the electro-hydraulic servo (EHS) system in the presence of structured and unstructured uncertainties. Initially, the robust control using the backstepping technique is presented to overcome the existing uncertainties in the dynamic equations. Mathematical proof demonstrates that the closed-loop system in the presence of uncertainties has a global asymptotic stability. Then, to overcome the chattering problem, a very simple fuzzy approximator is presented where it approximates the bounds of the uncertainties. Although the proposed robust fuzzy backstepping control has a desirable performance, it has no mathematical analysis to prove the stability of the closed-loop system. Therefore, to solve this problem, the proposed fuzzy approximator has been transformed into a one-law adaptive fuzzy approximator with a single-input single-output fuzzy rule. Mathematical analysis illustrates that the closed-loop system in the presence of uncertainties has a global asymptotic stability under the proposed robust adaptive fuzzy backstepping control. Furthermore, a novel modified harmony search algorithm (MHSA) has been developed, by using the original harmony search algorithm (OHSA) as an optimization technique, to achieve the optimal values of the membership functions and the control coefficients. Finally, a comparative study has been conducted between the proposed control scheme under the MHSA and the OHSA, and other existing advanced control approaches to verify the effectiveness of the proposed control. Results show that the proposed control scheme under the MHSA can suppress the chattering problem and reduce the disturbances effectively while ensuring that the performance is tracked.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3