Adaptive quasi-Monte Carlo method for uncertainty evaluation in centroid measurement of planetary rovers

Author:

Na Qiang1ORCID,Hu Shurong2,Tao Jianguo1,Luo Yang3

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology, People’s Republic of China

2. State Academy of Forestry Administration, People’s Republic of China

3. Shenyang Institute of Automation, Chinese Academy of Sciences, People’s Republic of China

Abstract

The measurement of the centroid is of great significance to improve the control performance and reduce the energy consumption of the planetary rover (PR). The uncertainty is an essential indicator of the reliability of centroid measurement results. The purpose of the current study is to evaluate the uncertainty of centroid measurement in the multi-configuration rover. For the measurement of the centroid, the model with 37 parameters of two measurements as the input and the centroid coordinates as the output is derived. Further, the mechanical and electrical integrated system is developed, which can measure the centroid of PRs in different configurations and sizes. Moreover, to overcome the shortcomings of the Monte Carlo method (MCM) in uncertainty evaluation, an adaptive algorithm that automatically determines the number of input sequences is proposed. On this basis, an adaptive quasi-Monte Carlo method (AQMCM) is presented in order to accelerate the uncertainty evaluation, which is characterized by the randomized Sobol sequence. Besides, experiments are performed to compare the uncertainty evaluation process and results of the AQMCM and the adaptive Monte Carlo method (AMCM) in multiple configurations. The result shows that the standard uncertainty of the AQMCM is almost the same as that of the AMCM, but the sequence size of AQMCM is evidently smaller than that of AMCM. Taken together, we identify that the AQMCM evaluates the uncertainty of CM for the multi-configuration rover in an efficient and fast way. Furthermore, the AQMCM provides a new method for uncertainty evaluation, particularly for nonlinear models in different states.

Funder

Deep Space Exploration Project of China’s national major special project

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3