A Decoupling Algorithm-Based Technology for Predicting and Regulating the Unbalance of Aircraft Rotor Assembly Considering Manufacturing Errors

Author:

Zhao Yingjie1,Mu Xiaokai1,Liu Jian1,Sun Qingchao1,Zhou Ping2,Fang Guozhen3

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China

2. Aeroengine Research Institute, Tsinghua University, Beijing 100084, China

3. Inner Mongolia First Machinery Group Co., Ltd., Baotou 014030, China

Abstract

Rotor unbalance is the most important factor affecting the dynamic performance of aircraft engines. The existing unbalance prediction and control methods are insufficient for multi-stage rotors. The post-assembly unbalance of rotors in aircraft engines is a critical factor affecting their dynamic performance. In order to predict and reduce the unbalance of multi-stage rotors after assembly, this paper establishes a measurement model for the center-of-mass offset of aircraft engine rotors through decoupled calculations of the unbalance. Furthermore, it constructs an unbalance prediction model using the spatial transfer mechanism of combined rotor offset centers under the influence of manufacturing errors. Additionally, a method for measuring rotor unbalance during the assembly phase is proposed. The experimental results of the unbalance in multi-stage combined rotor assembly indicate that the degree of agreement between the predicted results and the experimental results is 91.3%, resulting in a reduction in the mean error of 15.3% compared to before the correction. The study also investigates the impact of manufacturing errors on unbalance. This research provides robust support for controlling the unbalance in multi-stage combined rotor assembly.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3