Event-triggered adaptive command-filtered trajectory tracking control for underactuated surface vessels based on multivariate finite-time disturbance observer under actuator faults and input saturation

Author:

Meng Xiangfei1ORCID,Zhang Guichen1ORCID,Zhang Qiang2,Han Bing34

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, China

2. School of Navigation and Shipping, Shandong Jiaotong University, China

3. Shanghai Ship and Shipping Research Institute, China

4. College of Physics and Electronic Information Engineering, Minjiang University, China

Abstract

This paper is aiming at enabling the underactuated surface vessels (USVs) to complete the tracking task with high precision and fast convergence under the influence of unknown external interference, dynamic uncertainty, input saturation, limited communication resources, and actuator failure. Specifically, a trajectory tracking control scheme is designed using virtual control switching, robust self-adaptation, finite-time, event-triggered, and disturbance compensation techniques. The norm calculation is performed on the lateral and longitudinal errors of the underactuated USVs, and the virtual guidance direction of the system is obtained through virtual control conversion. The hyperbolic tangent function is introduced and combined with adaptive technology to compensate the dynamic uncertainty of the system. Through the multivariate finite-time disturbance observer (MFTDO), the unknown disturbance and the bias fault factor of the system are compensated. The tracking performance of the system is further improved using the finite-time technology and combined with the event-triggered technology to reduce the update frequency of the controller signal. Using Lyapunov stability theory, a detailed stability analysis is provided for the control scheme. Finally, the effectiveness of the control design scheme is verified by simulation.

Funder

Science and Technology Commission of Shanghai Municipality

the Natural Science Foundation of Fujian Province of China

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3