Identification of Damavand tokamak using fractional order dynamic neural network

Author:

Aslipour Zeinab1,Yazdizadeh Alireza2

Affiliation:

1. Faculty of Electrical Engineering, Shahid Beheshti (National) University of Iran, Evin, Tehran, Islamic Republic of Iran

2. Shahid Beheshti (National) University of Iran, Faculty of Electrical Engineering, Evin, Tehran, Islamic Republic of Iran

Abstract

The Damavand tokamak is a small size research machine for fusion-related studies. This paper is motivated by the need to create an accurate nonlinear subspace model that may be used for controller design. The system is identified based on a newly introduced Fractional Order Dynamic Neural Network (FODNN) optimized by evolutionary computation. The proposed method, owing to its rich structure, is appropriate for modeling of the complicated behavior of the plasma and its instability. In the proposed method, a Lyapunov-like analysis is used to derive a stable new learning rule for updating the proposed FODNN weights. To achieve optimal value for fractional order of the proposed FODNN, a Particle Swarm Optimization (PSO) is employed. The performance of the proposed identifier is verified by using experimental data and the results are also compared with the integer order dynamic neural network identifier. The results show that there is a bound for the “identification error” that vanishes to zero as time tends to infinity. Furthermore, the comparison of the results achieved by the proposed method and those of the integer order dynamic neural network depicts higher accuracy of the proposed FODNN.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3