Batch process modeling by using temporal feature and Gaussian mixture model

Author:

Guo Wei1,Pan Tianhong12ORCID,Li Zhengming1,Chen Shan1

Affiliation:

1. School of Electrical Information and Engineering, Jiangsu University, PR China

2. School of Electrical Engineering and Automation, Anhui University, PR China

Abstract

Multi-model/multi-phase modeling algorithm has been widely used to monitor the product quality in complicated batch processes. Most multi-model/ multi-phase modeling methods hinge on the structure of a linearly separable space or a combination of different sub-spaces. However, it is impossible to accurately separate the overlapping region samples into different operating sub-spaces using unsupervised learning techniques. A Gaussian mixture model (GMM) using temporal features is proposed in the work. First, the number of sub-model is estimated by using the maximum interval process trend analysis algorithm. Then, the GMM parameters constrained with the temporal value are identified by using the expectation maximization (EM) algorithm, which minimizes confusion in overlapping regions of different Gaussian processes. A numerical example and a penicillin fermentation process demonstrate the effectiveness of the proposed algorithm.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3