Adaptive invariant Kalman filtering for lie groups attitude estimation with biased and heavy-tailed process noise

Author:

Wang Jiaolong1ORCID,Zhang Chengxi2ORCID,Liu Jinyu3,Wei Caisheng4,Liu Haitao5

Affiliation:

1. Institute of Automation, Jiangnan University, China

2. Harbin Institute of Technology, China

3. Tsinghua University, China

4. School of Aeronautics and Astronautics, Central South University, China

5. School of Mechanical Engineering, Shanghai Jiao Tong University, China

Abstract

Attitude determination is fundamental for spacecraft missions in aerospace engineering. Kalman filter (KF) is the optimal estimator in least square sense and, using the symmetry properties of matrix Lie groups system, the invariant Kalman filter (IKF) has been developed to boost the filtering performance for attitude estimation. However, due to presence of frequent and severer maneuvers, the Lie groups attitude dynamics is usually corrupted by significant biases and heavy-tailed outliers, which usually leads to decreased precision of IKF. For attitude estimation problem troubled by biased and heavy-tailed process noise, this work proposes a new invariant Kalman filter (VBAIKF) by constructing the hierarchical Gaussian system model: the probability density function of prior estimate state is first described using the student’s t distribution, while the unknown scale covariance matrix and degrees of freedom (dof) of the employed student’s t distribution are defined as the inverse Wishart distribution (IWD) and Gamma distribution. In VBAIKF, the Lie groups rotation matrix of spacecraft, the biased mean, the parameters of dof and scale covariance matrix are online estimated together by variational Bayesian fixed-point iterations. The simulation results with Lie groups attitude estimation system further verify the superior filtering adaptability and precision of proposed approach VBAIKF than other methods for attitude determination with biased mean and heavy-tailed process noise.

Funder

Central University Basic Research Fund of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3