Fault diagnosis of rolling element bearing weak fault based on sparse decomposition and broad learning network

Author:

Li Xiaocheng1ORCID,Wang Jingcheng1,Zhang Bin2

Affiliation:

1. Automation Department, Shanghai Jiao Tong University, China

2. Electrical Engineering Department, South Carolina University, USA

Abstract

Rolling element bearings are widely used in rotating machinery and, at the same time, they are easily damaged due to harsh operating environments and conditions. As a result, rolling element bearings are critical to the safe operation of the mechanical devices. The incipient fault information extraction of rolling bearings mainly faces the following difficulties: (1) The fault signal is too weak. (2) The fault mechanism and the dynamic model of the rolling bearing system are complex. (3) The oscillations caused by the fault shocks are overlapped due to the smaller impact between two adjacent faults. (4) The impact interval of the fault will change randomly. To overcome the aforementioned difficulties, a connection network constructed by resonance-based sparse signal decomposition (RSSD) and broad learning system (BLS) without the need for deep architecture, namely RSSD-BLS, is proposed for intelligent fault diagnosis. We construct RSSD-BLS by input layer, RSSD decomposition layer, feature layer and output layer. So, when the observed vibration signals are the input layer, the network first uses RSSD to decompose the raw vibration signal into high resonance components and low resonance components. Then, the network obtains energy spectrum features of high resonance components which decomposed by RSSD to extract the unique features in the feature. Finally, the network recognizes different fault conditions in the output layer. Through comparing with commonly used intelligent network diagnosis method, the superiority of the proposed RSSD-BLS is verified.

Funder

Key projects from Ministry of Science and Technology

National Natural Science Foundation of China

Shaanxi Provincial Key Project

Shanghai Project

Key National Research and Development Program

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3