A modular fault diagnosis method for rolling bearing based on mask kernel and multi-head self-attention mechanism

Author:

Li Sifan1,Xu Yanhe1,Jiang Wei2ORCID,Zhao Kunjie1,Liu Wei1

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, P. R. China

2. Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, P. R. China

Abstract

Data-driven methods have been applied in fault diagnosis. However, in practical engineering, workers are more concerned with the real-time health status of bearings. And it is difficult to complete the effective training of diagnostic models with insufficient labeled fault data. Therefore, this paper proposes a modular method based on a mask kernel and multi-head self-attention mechanism for rolling bearing fault diagnosis. First, the proposed method divides the diagnosis into two modules of status detection and fault recognition. The approach of sharing one backbone for both modules simplifies the optimization process. The method combines the translation invariance of the convolution kernel and the mask attention mechanism of the transformer by computing the local self-attention and superimposing the partial local attention by the mask to ensure the integrity of the information. Finally, a zero-shot training method is proposed to embed the query into the model to achieve cross-distribution fault diagnosis of bearings. The experiments on the data sets of Case Western Reserve University and machinery fault simulator are implemented to diagnose the bearings. The results show that the proposed method can obtain higher diagnostic accuracy and computational efficiency than the existing methods and can be valid for scenarios with cross-condition diagnosis or imbalanced samples.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Natural Science Foundation of Jiangsu Province

Open Fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3