A modular fault diagnosis method for rolling bearing based on mask kernel and multi-head self-attention mechanism
Author:
Affiliation:
1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, P. R. China
2. Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, P. R. China
Abstract
Funder
Jiangsu Agricultural Science and Technology Innovation Fund
Natural Science Foundation of Jiangsu Province
Open Fund for Jiangsu Key Laboratory of Advanced Manufacturing Technology
Publisher
SAGE Publications
Subject
Instrumentation
Link
http://journals.sagepub.com/doi/pdf/10.1177/01423312231188777
Reference33 articles.
1. A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks
2. A BRB-Based Effective Fault Diagnosis Model for High-Speed Trains Running Gear Systems
3. A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults
4. A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem
5. Fault Description Based Attribute Transfer for Zero-Sample Industrial Fault Diagnosis
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of hot spots and trends in rolling bearing fault diagnosis research based on scientific knowledge mapping;Engineering Research Express;2024-05-15
2. Intelligent fault diagnosis based on improved convolutional neural network for small sample and imbalanced bearing data;Transactions of the Institute of Measurement and Control;2024-04-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3