Inverse control of single-input/single-output nonlinear time-varying systems with noise disturbances by multi-dimensional Taylor network

Author:

Yan Hong-Sen12ORCID,Zhang Chao132

Affiliation:

1. Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, China

2. School of Automation, Southeast University, China

3. School of Electrical Engineering and Automation, Henan Institute of Technology, China

Abstract

In this paper, an inverse control scheme based on the novel dynamic network (multi-dimensional Taylor network (MTN)) is proposed for the real-time tracking control of nonlinear time-varying systems with noise disturbances. Utilized in this scheme are the three MTNs: the adaptive model identifier for system modeling, the adaptive inverse controller for inverse modeling, and the adaptive nonlinear filter for eliminating the noise disturbances, whose weights are modified by the variable forgetting factor recursive least squares (VFF-RLS), back propagation through model (BPTM), normalized least mean square (NLMS) algorithms, respectively. To avoid “compromise”, this scheme is designed into a structure wherein controlling the object dynamic response and eliminating the noise disturbances are implemented in two relatively independent processes. Furthermore, the weight-elimination algorithm is introduced for choice of effective regression items to avoid the dimension explosion, thus overcoming the shortcoming that the number of middle nodes needs to be determined before using the traditional neural network. After a certain number of training, the more streamlined MTNs are observed to contribute to satisfying the real-time requirements of software implementation and engineering application. To ensure that MTN inverse control is strict in theory, the general conditions for the existence of single-input/single-output (SISO) nonlinear inverse systems are identified. Simulation of the MTN inverse control is conducted to confirm the effectiveness of the proposed method.

Funder

priority academic program development of jiangsu higher education institutions

National Natural Science Foundation of China

fundamental research funds for the central universities

High-level Talent Research Foundation of Henan Institute of Technology

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3