Adaptive friction compensations for mechanical systems with measurement delay

Author:

Odabaş Caner12ORCID,Morgül Ömer1

Affiliation:

1. Department of Electrical and Electronics Engineering, Bilkent University, Turkey

2. Radar, Electronic Warfare and Intelligence Systems Department, ASELSAN Inc., Turkey

Abstract

Application performance of mechanical positioning systems might not coincide with the theory, mainly due to nonlinearities or imperfections of system models. Although it is sometimes possible to ignore these mismatches, systems generally suffer from performance degradation or even instability eventually. Especially, friction force and time delay are two major factors of these undesired effects. Hence, in this paper, Smith predictor-based controllers and an adaptive Coulomb friction observer are designed to enhance position tracking performance of a mechanical system including time delay. In fact, implemented hierarchical control scheme provides two-degree of freedom to control both velocity and position separately. The proposed observer structure is mainly motivated by the Friedland-Park observer but could be considered as an extension of it which characterizes a general class of nonlinear functions for friction estimation. To assure its functionality with delayed measurements, different velocity predictor schemes are designed and their performances are compared. As a guideline for observer design, some conditions for exponential stability and robustness analysis are presented. Simulation results demonstrate that the proposed control system enhances the tracking performance even when the actual friction is a compound of various static and dynamic terms.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel observer design for friction estimation;International Journal of Control;2023-05-10

2. Friction force estimation in pneumatic cylinders by full automation of experimental procedures;Transactions of the Institute of Measurement and Control;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3