Fuzzy fault-tolerant containment control for multi-agent systems with unknown nonlinear dynamics

Author:

Sader Malika12,Wang Fuyong12,Liu Zhongxin12ORCID,Chen Zengqiang12ORCID

Affiliation:

1. College of Artificial Intelligence, Nankai University, China

2. Key Laboratory of Intelligent Robotics of Tianjin, China

Abstract

This paper studies the containment control problem for a class of nonlinear multi-agent systems (MASs) with actuator faults (AFs) and external disturbance under switching communication topologies. To address this problem, a new fuzzy fault-tolerant containment control method is developed via utilizing adaptive mechanisms. Furthermore, a sufficient condition is obtained to guarantee the stability of the considered closed-loop system by the dwell time technique combined with Lyapunov stability theory. Unlike the traditional method to estimate the weight matrix, the fuzzy logic system is used to estimate the norm of weight vectors. Thus, the difficulty that the unknown nonlinear function cannot be compensated for when the actuator produces outage or stuck fault is solved. Compared with the existing controllers for nonlinear MASs, the proposed controller is more suitable for the considered problem under the influence of AFs that are detrimental to the operation of each agent system. Besides which, the closed-loop system is proven to be stable by using the developed controller, and all followers converge asymptotically to the convex hull formed by the leaders. Finally, an example based on a reduced-order aircraft model is presented to verify the effectiveness of the designed control scheme.

Funder

National Natural Science Foundation of China

science fund for distinguished young scholars of tianjin

tianjin research innovation project for postgraduate students

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on fault-tolerant control strategies for lithium-ion battery systems;Transactions of the Institute of Measurement and Control;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3