Affiliation:
1. Department of Computer Engineering, Pamukkale University, Turkey
2. Department of Electrical and Electronics Engineering, Izmir Democracy University, Turkey
Abstract
A non-contact mode atomic force microscope with chaotic dynamics may exposed to unknown faults, disturbances or uncertain parameters that are not always be compensated using classical control methods. Therefore, a fault tolerant controller must be designed for accurate tracking of the tip-position of the end-effector. In this paper, first, an unscented Kalman filter is designed for joint estimation of the states and parameters for an atomic force microscopy under process noise. The velocity of the end-effector, sample height and unknown fault are simultaneously estimated by measuring the tip position of randomly excited microscopy. Second, unscented Kalman filtering based model predictive controller is proposed for the accurate tracking of the tip-position. To prevent the disadvantage of the model-based controller design, an uncertainty or unknown fault function of the system is estimated by unscented Kalman filter such that the unmodeled dynamics of the system are compensated while the control signal is produced. Note that the controller voltage being applied to the microscopy is produced based on the estimated states and parameters of the atomic force microscopy. The numerical applications present that satisfactory tracking performance for tip position is obtained by the proposed fault tolerant controller such that extended Kalman filtering-based tracking results are also compared and discussed.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献