Active fault tolerant control for high-precision positioning of a non-contact mode uncertain atomic force microscopy

Author:

Cetin Meric1ORCID,Beyhan Selami2

Affiliation:

1. Department of Computer Engineering, Pamukkale University, Turkey

2. Department of Electrical and Electronics Engineering, Izmir Democracy University, Turkey

Abstract

A non-contact mode atomic force microscope with chaotic dynamics may exposed to unknown faults, disturbances or uncertain parameters that are not always be compensated using classical control methods. Therefore, a fault tolerant controller must be designed for accurate tracking of the tip-position of the end-effector. In this paper, first, an unscented Kalman filter is designed for joint estimation of the states and parameters for an atomic force microscopy under process noise. The velocity of the end-effector, sample height and unknown fault are simultaneously estimated by measuring the tip position of randomly excited microscopy. Second, unscented Kalman filtering based model predictive controller is proposed for the accurate tracking of the tip-position. To prevent the disadvantage of the model-based controller design, an uncertainty or unknown fault function of the system is estimated by unscented Kalman filter such that the unmodeled dynamics of the system are compensated while the control signal is produced. Note that the controller voltage being applied to the microscopy is produced based on the estimated states and parameters of the atomic force microscopy. The numerical applications present that satisfactory tracking performance for tip position is obtained by the proposed fault tolerant controller such that extended Kalman filtering-based tracking results are also compared and discussed.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3