Development of emotion classifier based on absolute and differential attributes of averaged signals of visually stimulated event related potentials

Author:

Singh Moon Inder1ORCID,Singh Mandeep1

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, India

Abstract

Analysis and study of abstract human relations have always posed a daunting challenge for technocrats engaged in the field of psychometric analysis. The study on emotion recognition is all the more demanding as it involves integration of abstract phenomenon of emotion causation and emotion appraisal through physiological and brain signals. This paper describes the classification of human emotions into four classes, namely: low valence high arousal (LVHA), high valence high arousal (HVHA), high valence low arousal (HVLA) and low valence low arousal (LVLA) using Electroencephalogram (EEG) signals. The EEG signals have been collected on three EEG electrodes along the central line viz: Fz, Cz and Pz. The analysis has been done on average event related potentials (ERPs) and difference of average ERPs using Support Vector Machine (SVM) polynomial classifier. The four-class classification accuracy of 75% using average ERP attributes and an accuracy of 76.8% using difference of ERPs as attributes has been obtained. The accuracy obtained using differential average ERP attributes is better as compared with the already existing studies.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3